成人激情在线视频_成人免费在线视频观看_国产日韩视频在线观看_国产精品综合网_www.jizzjizz.com_国产成人精品久久久

Product Center

產品中心

當前位置:首頁  >  產品中心  >  呼吸與肺功能研究  >  動物呼吸肺功能檢測系統  >  HOP-4小動物頭外置體積描記系統

小動物頭外置體積描記系統

簡要描述:塔望科技開發的小動物頭外置體積描記系(Head-Out Plethysmography),采用特殊設計,使小動物的頸部與身體隔開,口鼻暴露在外面,實時測定容納身體的腔室內氣體容積與壓力的變化。Glaab等對哮喘小鼠使用mACh激發后,取呼氣中段流量(EF50 )下降55%時的mACh量( EF50)為指標來表示支氣管反應的敏感性,研究證明,EF50和RL及CL有較好的相關性,可較好地反映呼吸系統。

  • 產品型號:HOP-4
  • 廠商性質:生產廠家
  • 更新時間:2026-01-16
  • 訪  問  量:2175

詳細介紹

品牌其他品牌產地類別國產
應用領域醫療衛生,環保,化工,生物產業,綜合

產品描述

塔望科技開發的小動物頭外置體積描記系統(Head-Out Plethysmography),采用特殊設計,使小動物的頸部與身體隔開,口鼻暴露在外面,實時測定容納身體的腔室內氣體容積與壓力的變化。Glaab等對哮喘小鼠使用mACh激發后,取呼氣中段流量(EF50 )下降55%時的mACh量( EF50)為指標來表示支氣管反應的敏感性,研究證明,EF50和RL及CL有較好的相關性,可較好地反映呼吸系統的機械動力學改變。


產品特點

小動物頭外置體積描記系統采用頭外置式體積描記系統測量過程中,動物保持清醒狀態,不需要麻醉,避免了創傷性氣管切開術及麻醉的影響,使實驗過程簡便快捷,并適合長期跟蹤研究。

另外系統可擴展連接霧化給藥器,對動物進行霧化給藥,建立咳嗽、哮喘等呼吸道疾病模型,系統可檢測和記錄激發過程中呼吸常規指標和氣道高反應的變化,用以評價支氣管收縮情況。


  • 不需要做手術,操作簡單。

  • 動物處于清醒狀態,結果不受麻醉和手術影響。

  • 可以實現在同一只動物上做長期跟蹤實驗。

  • 配備氣溶膠霧化模塊 。(可根據實驗要求選配)

  • 可聯合同步測量其它信號,如體溫、血壓、心電信號等。


小動物頭外置體積描記系統


小動物頭外置體積描記系統可連接口鼻暴露系統,實時在線監測動物肺功能指標的變化



檢測參數

小動物頭外置體積描記系統

Ti:吸氣時間(s)

Te:呼氣時間(s)

PIF:最大吸氣流速(ml/s)

PEF:最大呼氣流速(ml/s)

Volbal:吸氣時間/呼氣時間

F:呼吸頻率(次/min)

Vt:潮氣量(ml)

Mv:分鐘通氣量(ml)

AV:累積體積(ml)

EF50:呼出50%氣量時對應的呼氣流速(ml/s)

EIP:吸氣末暫停時間

EEP:呼氣末暫停時間

TR:松弛時間

PenH:增強呼氣間歇(enhanced pause)

Rpef:相對時間


小動物頭外置體積描記系統應用領域

哮喘Asthma

肺纖維化Lung Fibrosis

慢性阻塞性肺病COPD

急性呼吸系統疾病Acute Respiratory Disorders

型開發Model Development

安全評估 Safety Assessment

毒理學Toxicology





小動物頭外置體積描記系統型號選擇

序號

名稱

型號

說明

單位

1

頭外置體積描記系統

HOP-2M

雙通道小鼠

2

頭外置體積描記系統

HOP-2R

雙通道大鼠

3

頭外置體積描記系統

HOP-2MR

雙通道大小鼠通用

4

頭外置體積描記系統

HOP-4M

四通道大小鼠通用

5

頭外置體積描記系統

HOP-4R

四通道大小鼠通用

6

頭外置體積描記系統

HOP-4MR

四通道大小鼠通用

7

頭外置體積描記系統

HOP-8M

八通道小鼠

8

頭外置體積描記系統

HOP-8R

八通道大鼠

9

頭外置體積描記系統

HOP-8MR

八通道大小鼠通用

10

頭外置體積描記系統

HOP-16M

16通道大鼠

11

頭外置體積描記系統

HOP-16R

16通道大鼠

12

頭外置體積描記系統

HOP-16MR

16通道大小鼠通用






















小動物頭外置體積描記系統用戶名單


上海市中心醫院瑞金醫院復旦大學附屬華山醫院上海藥物所
中國藥科大學江蘇珂瑪麒生物科技有限公司重慶醫科大學中國人民jiefangjun總醫院
北京中醫藥大學中科院城市環境研究所南京大學四川大學華西醫院
蘇州大學藥明康德南京醫科大學空軍軍醫大學
蘭州大學陸jun特色醫學中心大坪醫院海jun特色醫學中心......











小動物頭外置體積描記系統相關文獻

  • [1] Zhou J W, Bai Y, Guo J Q, et al. Peroxiredoxin 4 as a switch regulating PTEN/AKT axis in alveolar macrophages activation[J]. Signal Transduction and Targeted Therapy (IF 52.7), 2025, 10(1): 352.

  • [2] Jiang C, Huang H, Yang X, et al. Targeting mitochondrial dynamics of morphin-responsive dopaminergic neurons ameliorates opiate withdrawal[J]. The Journal of Clinical Investigation (IF 19.5), 2024.

  • [3] Wang Z, Miao Z, Cao Z, et al. Mild Hyperthermia‐Assisted Coaxial Electrospun Nanofiber Patches for Epicutaneous Allergen‐Specific Immunotherapy[J]. Advanced Functional Materials (IF 19.0), 2025: e09955.

  • [4] Dong S, Fang H, Zhu J, et al. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis[J]. ACS nano (IF 15.8), 2025.

  • [5] Chen J, Wang J, Zheng W, et al. Brain–cervical lymph node crosstalk contributes to brain injury induced by subarachnoid hemorrhage in mice[J]. Nature Communications (IF 15.7), 2025, 16(1): 8551.

  • [6] Wang Y, Zhao Q, Zhang Q, et al. Targeted Delivery of CNS‐Specific Hesperidin as a Leptin Sensitizer for Treating Obesity‐Associated Sleep‐Disordered Breathing[J]. Advanced Science (14.1), 2025, 12(45): e06182.

  • [7] Wang Z, Lu X, Wu L, et al. Co-delivery of targeted hypoallergens and resiquimod powders using silk fibroin microneedles for effective allergen-specific immunotherapy[J]. Theranostics (IF 13.3), 2025, 15(16): 8096.

  • [8] Liu Y, Li G, Xiong A, et al. Fine particulate matter exacerbates asthma by activating STC2-mediated mitophagy through METTL3/YTHDF2-dependent m6A methylation[J]. Journal of Hazardous Materials (IF12.2), 2025: 138854.

  • [9] Li H, Liu S, Dai W, et al. Pressure-sensitive multivesicular liposomes as a smart drug-delivery system for high-altitude pulmonary edema[J]. Journal of Controlled Release (IF 11.5), 2024, 365: 301-316.

  • [10] Hou T, Zhu L, Zhang Y, et al. Lipid peroxidation triggered by the degradation of xCT contributes to gasdermin D-mediated pyroptosis in COPD[J]. Redox Biology (IF 10.1), 2024, 77: 103388.

  • [11] Luo L, Qin Z, Chen M, et al. γ-Aminobutyric acid–mediated parafacial zone: Integrating consciousness and respiratory control in sevoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 144(1): 116.

  • [12] Duan L L, Cai P, Li Z S, et al. Role of the supramammillary nucleus–medial septum glutamatergic pathway in mediating the effects of isoflurane anesthesia[J]. Anesthesiology (IF 9.1), 2025, 143(4): 944.

  • [13] Wei X, Cao X, Xu C, et al. Revolutionizing antibiotic therapy: polymyxin B and Fe2+-enriched liposomal carrier harness novel bacterial ferroptosis mechanism to combat resistant infections[J]. Journal of Pharmaceutical Analysis, 2025: 101293.

  • [14] Zhou W, Zhou Y, Zhang S, et al. Gut microbiota’s role in high-altitude cognitive impairment: The therapeutic potential of Clostridium sp. supplementation[J]. Science China Life Sciences, 2025, 68(4): 1132-1148.

  • [15] Liu J, Gao J, Xiong A, et al. Exploring Cistanche's therapeutic potential and molecular mechanisms in asthma treatment[J]. Phytomedicine, 2025, 136: 156265.

  • [16] Wang X, Zhao H, Lin W, et al. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization[J]. Phytomedicine, 2025, 139: 156513.

  • [17] Jiang J, Ai S, Yuan C, et al. Dysfunction of cholinergic neuron in nucleus ambiguous aggravates sepsis-induced lung injury via a GluA1-dependment mechanism[J]. Brain, Behavior, and Immunity, 2025.

  • [18] Xu Z, Wu Y, Zhao X, et al. Integrating nontargeted metabolomics and RNA sequencing of dexamethasone-treated and untreated asthmatic mice reveals changes of amino acids and aminoacyl-tRNA in group 2 innate lymphoid cells[J]. International Journal of Biological Macromolecules, 2024, 283: 137630.

  • [19] Su J, Tu Y, Hu X, et al. Ambient PM2. 5 orchestrates M1 polarization of alveolar macrophages via activating glutaminase 1-mediated glutaminolysis in acute lung injury[J]. Environmental Pollution, 2025, 366: 125467.

  • [20] Shan C, Li W, Sun Y, et al. Benzo (a) pyrene exposure aggravates airway remodeling in asthma by activating AhR-GDF15 pathway in epithelial cells[J]. Environmental Pollution, 2025: 127557.

  • [21] Zhang M, Xu B, Li N, et al. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects[J]. Journal of Medicinal Chemistry, 2023.

  • [22] Long Y, Ang Y, Chen W, et al. Hydrogen alleviates impaired lung epithelial barrier in acute respiratory distress syndrome via inhibiting Drp1-mediated mitochondrial fission through the Trx1 pathway[J]. Free Radical Biology and Medicine, 2024, 218: 132-148.

  • [23] Wang Y, Liu X, Zhang Q, et al. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model[J]. Biomedicine & Pharmacotherapy, 2024, 178: 117159.

  • [24] Tabynov K, Tailakova E, Rakhmatullayeva G, et al. Comparison of rArt v 1-based sublingual and subcutaneous immunotherapy in a murine model of asthma[J]. npj Vaccines, 2025, 10(1): 66.

  • [25] Jiang Y, Zhang Y, Wang X, et al. Phosphatase PHLPP1 is an alveolar-macrophage-intrinsic transcriptional checkpoint controlling pulmonary fibrosis[J]. Cell Reports, 2025, 44(3).

  • [26] Liu S, Chu J, Yin X, et al. The adeno associated viral vectored Dp12S vaccine effective alleviation of asthma symptoms in mice[J]. npj Vaccines, 2025.

  • [27] Jin M, Liu J, Shao M, et al. Chitosan Nanoparticles for Pulmonary Delivery of Curcumin/Nintedanib to Treat Pulmonary Fibrosis[J]. International Journal of Nanomedicine, 2025: 12959-12973.

  • [28] Xiong A, He X, Liu S, et al. Oxidative stress-mediated activation of FTO exacerbates impairment of the epithelial barrier by up-regulating IKBKB via N6-methyladenosine-dependent mRNA stability in asthmatic mice exposed to PM2. 5[J]. Ecotoxicology and Environmental Safety, 2024, 272: 116067.

  • [29] Jia X, Liu S, Sun C, et al. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism[J]. Ecotoxicology and Environmental Safety, 2025, 289: 117518.

  • [30] Lu X, Tan Z X, Yao Y X, et al. Inhaling arsenic aggravates airway hyperreactivity by upregulating PNEC-sourced 5-HT in OVA-induced allergic asthma[J]. Ecotoxicology and Environmental Safety, 2025, 290: 117764.

  • [31] Li Q, Ang Y, Zhou Q, et al. Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway[J]. Journal of Pharmaceutical Analysis, 2024: 101039.

  • [32] Zhang X, Hu T, Yu X, et al. Human umbilical cord mesenchymal stem cells improve lung function in chronic obstructive pulmonary disease rat model through regulating lung microbiota[J]. Stem Cells, 2024: sxae007.

  • [33] Akhtemova N, Sergazina A, Bolatbekov T, et al. The role of major allergens Art v 1 and Art v 3 in Artemisia pollen-induced asthma: a mouse model study[J]. Frontiers in Immunology, 2025, 16: 1590791.

  • [34] Tabynov K, Nedushenko I, Tailakova E, et al. Intranasal monoclonal antibodies to mugwort pollen reduce allergic inflammation in a mouse model of allergic rhinitis and asthma[J]. Frontiers in Immunology, 2025, 16: 1595659.

  • [35] Zhang Y, Jiang M, Xiong Y, et al. Integrated analysis of ATAC-seq and RNA-seq unveils the role of ferroptosis in PM2. 5-induced asthma exacerbation[J]. International Immunopharmacology, 2023, 125: 111209.

  • [36] Yao W, Huang S X, Zhang L, et al. Central amygdala somatostatin neurons modulate stress-induced sleep-onset insomnia[J]. Communications Biology, 2025, 8(1): 381.

  • [37] Lin Y, Wu Y, Ma F, et al. Exploration of the mechanism of Qi-Xian decoction in asthmatic mice using metabolomics combined with network pharmacology[J]. Frontiers in Molecular Biosciences, 2023, 10.

  • [38] Yang D, Li Y, Liu T, et al. IL‐1β promotes IL‐17A production of ILC3s to aggravate neutrophilic airway inflammation in mice[J]. Immunology, 2025, 176(1): 16-32.

  • [39] Zhang Y, Yang Y, Liang H, et al. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway[J]. International Journal of Molecular Sciences, 2024, 25(19): 10406.

  • [40] Tsentsevitsky A N, Sibgatullina G V, Odoshivkina Y G, et al. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging[J]. International Journal of Molecular Sciences, 2024, 25(16): 8959.

  • [41] Ma J, Ni Z, Chen Q, et al. Exploring the kidney-tonifying effect of Qi-Xian decoction for asthma treatment by modulating the proliferation and migration of endogenous BMSCs[J]. Chinese Journal of Natural Medicines, 2025, 23(12): 100009.

  • [42] Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome[J]. International Immunopharmacology, 2024, 134: 112199.

  • [43] Yuan Z, Wang Q, Tan Y, et al. Methylprednisolone alleviates lung injury in sepsis by regulating miR-151-5p/USP38 pathway[J]. International Immunopharmacology, 2024, 138: 112548.

  • [44] Wang Y, Peng M, Yang X, et al. Total alkaloids in Fritillaria cirrhosa D. Don alleviate OVA-induced allergic asthma by inhibiting M2 macrophage polarization[J]. Journal of Ethnopharmacology, 2025, 337: 118935.

  • [45] He J, Li J, Lin Q, et al. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice[J]. Inflammation Research, 2024, 73(3): 433-446

  • [46] Liu Y, Tang A, Liu M, et al. Tuberostemonine may enhance the function of the SLC7A11/glutamate antiporter to restrain the ferroptosis to alleviate pulmonary fibrosis[J]. Journal of Ethnopharmacology, 2024, 318: 116983.

  • [47] Chen N, Xie Q M, Song S M, et al. Dexamethasone protects against asthma via regulating Hif-1α-glycolysis-lactate axis and protein lactylation[J]. International Immunopharmacology, 2024, 131: 111791.

  • [48] Li R, Zhang W, Huang B, et al. Dayuan Yin alleviates symptoms of HCoV-229E-induced pneumonia and modulates the Ras/Raf1/MEK/ERK pathway[J]. Natural Products and Bioprospecting, 2024, 14(1): 58.

  • [49] Wei M, Song M, Lin L, et al. Mechanism of Keke tablets in treating post-infectious cough following influenza A virus infection based on network pharmacology, molecular docking, molecular dynamics and in vivo experiments[J]. International Immunopharmacology, 2025, 162: 115123.

  • [50] Gong X T, Li Z S, Chen Z L, et al. Basal forebrain-ventral tegmental area glutamatergic pathway promotes emergence from isoflurane anesthesia in mice[J]. Journal of Neuroscience, 2025.

  • [51] Cheng S, Huang H, Zhang Z, et al. Pulmonary delivery of excipient-free tobramycin DPIs for the treatment of Pseudomonas aeruginosa lung infection with CF[J]. Frontiers in Pharmacology, 2025, 16: 1528905.

  • [52] Yan C X, Sun K, Zhu X, et al. Oligomeric proanthocyanidins mitigate acute lung injury by inhibiting NETs and inflammation via the gut-lung axis[J]. Journal of Functional Foods, 2024, 118: 106272.

  • [53] Liu Y, Wang X, Wei J, et al. Comprehensive profiling of amino acids and derivatives in biological samples: A robust UHPLC-MS/MS method for investigating acute lung injury[J]. Journal of Chromatography A, 2024, 1721: 464816.

  • [54] Zakyrjanova G F, Tsentsevitsky A N, Matigorova V A, et al. Cholesterol-lowering treatment suppresses neuromuscular transmission via presynaptic mechanism at the mouse diaphragm muscle[J]. Neurochemical Research, 2025, 50(5): 1-23.

  • [55] Zhang J, Huang M, Zhou J, et al. Bmi-1 overexpression mitigates vitamin D deficiency-induced pulmonary fibrosis via TIME pathway[J]. Cellular Signalling, 2025: 112180.

  • [56] Sun G, Hao W, Li Q, et al. Therapeutic and prophylactic effects of Qipian on COPD in mice: the role of lung and gut microbiota[J]. Microbiology Spectrum, 2025: e01969-24.

  • [57] Khaziev A N, Tsentsevitsky A N, Fedorov N S, et al. Exogenous nanomolar zinc ion (Zn2+) as a negative modulator of neuromuscular transmission via presynaptic mechanism in mouse diaphragm[J]. BioMetals, 2025: 1-24.

  • [58] Fu X, Wang L T, Xu Q, et al. Necroptosis Inhibition Preserves Diaphragm Function in Experimental Sepsis[J]. The American Journal of Pathology, 2025, 195(12): 2373-2386.

  • [59] Zheng R, Yang W, Yan J, et al. DNAH10 mutation cause primary ciliary dyskinesia with defects of IDAf complex assembly and lung fibrosis manifestation[J]. Orphanet Journal of Rare Diseases, 2025, 20(1): 469.

  • [60] Chen X Y, Wang L, Ma X, et al. Development of fentany-specific monoclonal antibody (mAb) to antagonize the pharmacological effects of fentany[J]. Toxicology and Applied Pharmacology, 2024, 486: 116918.

  • [61] Han C H, Zhang P X, Liu Y, et al. Inhibition of renin-angiotensin system attenuates type I alveolar epithelial cell necroptosis in rats after hyperbaric hyperoxic exposure[J]. Frontiers in Medicine, 2025, 12: 1521729.

  • [62] Yin, Lijun; Guan, Zhenbiao; Xu, Jiajun; Yu, Xuhua; Wen, Yukun; Wang, Shifeng; Liu, Wenwu. Assessment of hyperbaric hyperoxic lung injury in rats. Medical Gas Research 15(1):p 129-131, March 2025. | DOI: 10.4103/mgr.MEDGASRES-D-24-00030 

  • [63] Yin L, Wen Y, Liang Z, et al. Lung function and blood gas of rats after different protocols of hypobaric exposure[J]. Medical Gas Research, 2025, 15(1): 180-187.

  • [64] Aisanjiang M, Dai W, Wu L, et al. Ameliorating lung fibrosis and pulmonary function in diabetic mice: Therapeutic potential of mesenchymal stem cell[J]. Biochemical and Biophysical Research Communications, 2024, 737: 150495.

  • [65] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.

  • [66] Jia X, Sun J, Zhuo Q, et al. Effect of the NLRP3 inflammasome on increased hypoxic ventilation response after CIH exposure in mice[J]. Respiratory Physiology & Neurobiology, 2024, 321: 104204.

  • [67] Kuznetsova E A, Fedorov N S, Zakyrjanova G F, et al. 25-Hydroxycholesterol as a negative regulator of diaphragm muscle contractions via estrogen receptor and Ca2+-dependent pathway[J]. Histochemistry and Cell Biology, 2025, 163(1): 1-15.

  • [68] Wu Y, Dai T, Qin J, et al. Regulation of Dendritic Cell Function by RFX5 through Interaction with HDAC2 and Its Mechanism in Pediatric Asthma[J]. Biocell, 2025, 49(4).

  • [69] Xu X, Nie X, Zhang W, et al. A brainstem circuit controls cough-like airway defensive behaviors in mice[J]. bioRxiv, 2024: 2024.09. 08.611924.

  • [70] Li W, Wu L, Lu X, et al. Prenatal Benzo [A] Pyrene Exposure Exacerbates Ova-Induced Asthma in Offspring Mice[J]. Available at SSRN 5265037.




*我公司可以根據客戶的特殊應用、特殊需求提供功能定制服務,也可以提供相關的實驗服務。









產品咨詢

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7
021-51537683
歡迎您的咨詢
我們將竭盡全力為您用心服務
502153910
關注微信
版權所有 © 2026 上海塔望智能科技有限公司  備案號:滬ICP備18011326號-4
主站蜘蛛池模板: 朝桐光一区二区三区 | 亚洲不卡影院 | 欧美黄色大片免费看 | 精品黄色av | 亚洲字幕在线观看 | 天堂在线观看中文字幕 | 网站久久久| 亚洲最大成人av | 国产码视频 | 久久久久久久久久av | 国产色av | 奇米影视狠狠干 | 国产精品免费一区二区三区 | 黄色成人小视频 | 日韩欧美三区 | 亚洲最大av在线 | 国产麻豆免费视频 | 少妇高潮一区二区三区喷水 | 日韩在线第一 | 在线a网站 | 色婷婷综合网 | 9l视频自拍九色9l视频成人 | 超碰公开在线观看 | av网站导航 | 日韩一区二区三区四区在线 | 亚洲字幕av一区二区三区四区 | 97av在线| 免费中文字幕日韩欧美 | 天天干天天插天天射 | 日韩激情在线播放 | 97视频网站 | 噜噜噜影院 | 视频一区中文字幕 | 免费萌白酱国产一区二区三区 | 丁香婷婷久久 | 欧美专区第一页 | 国产一区二区成人 | 视频精品久久 | 久久成人国产 | 亚洲色图都市激情 | 18视频在线观看网站 |